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Abstract. Electron spin-resonance studies of the Ni-doped spin–Peierls compound CuGeO3

have been performed for the frequency range 9–75 GHz and temperature interval 1.3–20 K.
An anomalous temperature dependence of theg-factor below the spin–Peierls temperature was
observed for doped samples. At low temperatures theg-factor is much smaller than the value
expected for Cu2+ and Ni2+ ions and is much more anisotropic than for an undoped crystal.
This anomaly is explained by the formation of magnetic clusters around the Ni2+ ions within
a nonmagnetic spin–Peierls matrix. The formation of magnetic clusters is confirmed by the
observation of a nonlinear static magnetic susceptibility at low temperatures.

The reduction of the spin–Peierls transition temperature was found to be linear in the dopant
concentrationx over the range 06 x 6 3.2%. The transition into the antiferromagnetically
ordered state, detected earlier by neutron scattering forx > 1.7%, was studied by means
of ESR. Forx = 3.2% a gap in the magnetic resonance spectrum is found below the Néel
temperature and the spectrum is well described by the theory of antiferromagnetic resonance
based on the molecular-field approximation. Forx = 1.7% the spectrum below the Néel point
remained gapless. The gapless spectrum of the antiferromagnetic state in weakly doped samples
is attributed to the small value of the Néel order parameter and to the magnetically disordered
spin–Peierls background.

1. Introduction

The magnetic properties of crystals of the quasi-one-dimensional magnet CuGeO3 have been
extensively studied since Haseet al [1] reported that this compound is the first inorganic
spin–Peierls material. The spin–Peierls transition occurs because theS = 1/2 Heisenberg
antiferromagnetic chains are unstable when coupled to a three-dimensional phonon field [2].
Below the transition temperature the magnetic chains are dimerized and the distance between
the neighbouring magnetic ions as well as the exchange integral alternate. The positions of
pairs of magnetic ions after the dimerization are correlated between neighbouring chains.
Thus the dimers construct an ordered sublattice.

The dimerization of the magnetic ions in chains arranged along thec-direction of the
orthorhombic crystal leads to the formation of the nonmagnetic ground state separated from
the excited triplet states by an energy gap1 ≈ 2 meV≈ 23 K [3]. The unit cell in the
dimerized state is doubled along thea- andc-directions and the intrachain exchange integral
takes the alternating valuesJ1,2 = (1±δ)Jc. HereJc = 10.2 meV is the intrachain exchange
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integral andδ ≈ 0.04 is a distortion parameter [4]. The existence of such dimerization
was confirmed by the observation of additional reflections by x-ray [5] and neutron [4]
diffraction. Since the thermally excited triplet states are separated from a nonmagnetic
ground state by an energy gap, the number of excitations and the magnetic susceptibility
should decrease and tend to zero below the transition temperature. Both static susceptibility
measurements [1] and ESR studies [6–8] performed on crystals of pure CuGeO3 showed that
the susceptibility rapidly decreases belowTSP = 14.5 K. The temperature of the transition
to the dimerized state was obtained from the initial decrease in susceptibility.

CuGeO3 is not a perfect one-dimensional magnet; the intrachain exchangeJc is larger
but not much stronger than the interchain exchangesJb = 0.1Jc andJa = −0.01Jc [3]. A
next-nearest-neighbour exchange along the chains with a significant value ofJ ′ ≈ 0.36Jc
also probably exists in this compound [9–11]. If the crystal lattice of CuGeO3 was harder,
this crystal would be antiferromagnetic due to the intra- and interchain exchange interactions
with a Néel temperature of about [12]

TN ∼ (JcJb)1/2 ∼ 10 K.

But the spin–Peierls state wins the competition with long-range antiferromagnetic order.
Doping by impurities makes long-range antiferromagnetic order possible again. The
presence of impurities diminishes the temperature of the spin–Peierls transition and at
lower temperatures a Ńeel ordering occurs [13, 14]. The spin–Peierls dimerization and
the antiferromagnetism were found to coexist in doped crystals. This phenomenon was
explained by Fukuyamaet al [15] and Khomskii et al [11], who showed by different
methods that the impurity or the defect in the dimerization should be surrounded by a region
of antiferromagnetically correlated spins, forming magnetic clusters, or solitons. The tails
of these solitons could overlap, producing long-range magnetic order. From such a point
of view, the reduction of the spin–Peierls temperature is proportional to the concentration
of the dopant for small concentrations.

The impurity or the point magnetic defect inserted into the nonmagnetic spin–Peierls
matrix generates a ‘many-spin’ object consisting of the impurity itself and of several
neighbouring Cu-ion spins. The magnetic object formed due to the presence of the
impurity is therefore a mesoscopic-type object containing a number of spins which is inter-
mediate between microscopic and macroscopic systems, while the magnetization remains
microscopic.

Single crystals of CuGeO3 with the following substituting impurities were investigated:
Si, Ti on the Ge sites [13, 16], Zn, Mg [17–19], Ni [20, 21] and Co [22] on the Cu sites.
The suppression of the spin–Peierls transition and occurrence of antiferromagnetic order at
low temperatures are common features for different dopants. In the antiferromagnetic phase
the magnetic moment per Cu ion is strongly reduced. This reduction depends upon the
type of dopant and their concentration. For the 3.2% Ni-doped crystal the effective moment
is µeff = (0.16± 0.03)µB while it decreases to(0.06± 0.03)µB for the 1.7% Ni-doped
sample [20]. For the 3.2% Zn-doped crystalµeff ≈ 0.2µB [23]. The direction of the easy
axis of the antiferromagnetically ordered state also depends on the dopant: the easy axis is
directed along thec-axis for Zn [8], Si [24], Co [22], while for the Ni-doped crystals it is
directed along thea-axis [21].

The aim of the present paper was the study of the ESR signals from the impurity-seeded
magnetic clusters and the search for the antiferromagnetic resonance (AFMR) in the Ni-
doped single crystals Cu1−xNixGeO3. These were the same crystals as were investigated
earlier by means of neutron scattering [20].
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2. Experimental details and samples

In our experiments we used a set of ESR spectrometers with transmission-type cavities
in the frequency range 8–80 GHz. The microwave cavities were placed in a hermetically
isolated volume immersed in a liquid helium bath and filled with a small amount of He gas,
enabling one to vary the temperature of the cavity containing the sample over the range
1.3–20 K. The magnetic resonance absorption lines were recorded through the dependence
of the transmitted microwave power on the applied magnetic field. The reduction of the
transmitted power is proportional to the power absorbed by the sample when the absorbed
power is low. In the paramagnetic state the intensity of the absorption integrated over the
magnetic field is proportional to the static susceptibility of the spin system.

The magnetization curves were obtained using an Oxford Instruments vibrating-sample
magnetometer.

Figure 1. The temperature evolution of the ESR line for the 0.5% Ni-doped sample.H ‖ c,
f = 36.7 GHz. The arrow marks the resonance field of the free-electron spin (g = 2).

Single crystals of Cu1−xNixGeO3 with x = 0.017 andx = 0.032 were produced by
the crystal growth procedure described in [20]. These were the same samples as had been
used for neutron scattering experiments. These experiments showed the appearance of
antiferromagnetic order atTN = 2.3 K in the 1.7% Ni-doped crystal and at 4.2 K for
x = 3.2%. The transition to the spin–Peierls state atTSP = 11.5 K was observed for the
1.7% Ni-doped crystal, while for the sample containing 3.2% Ni the spin–Peierls transition
was not clearly observed. The values of the exchange integralsJb = 0.7 ± 0.1 meV,
Jc = 1.8 ± 0.3 meV and of the spin-wave energy gap1 ≈ 0.18 meV were obtained
from the dispersion curves of the magnetic excitations in the 3.2% Ni-doped CuGeO3

at T = 1.5 K. To investigate the influence of the Ni doping at low concentrations,
when the dopant atoms do not interact, crystals of Cu1−xNixGeO3 with x 6 0.005
were grown by recrystallization of ceramic samples in air using a horizontal floating-zone
method. The growth rate was 5–7 mm h−1. The ceramic samples were prepared by the
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annealing in air of a nonstoichiometric mixture of CuO, GeO2 and Ni2O3 at 950 ◦C for
24 hours.

3. Experimental results

3.1. The temperature evolution of the ESR line and the AFMR spectrum

The evolution of the ESR line with temperature for the pure crystals of CuGeO3 is described
in [6–8]. The intensity of the resonance absorption diminishes rapidly belowTSP . The
nonmonotonic change of theg-factors ga, gb and gc takes place with the temperature
variation in the range between 14.5 and 4 K. This change occurs near the values which are
close tog = 2.1 and the magnitude of this change does not exceed 4% forga andgb and
1% for gc. The additional line withga = 1.82, gc = 1.45, gb = 1.86 occurs below 4 K.
The main line splits into three narrow lines at low temperatures. At a temperature of 4 K
the ESR integral intensity of pure samples from our set of crystals is about 3× 10−3 of the
intensity of a paramagnet with one electron spin per Cu ion. The residual ESR signal of
the pure crystals is attributed to defects in the structure and to residual impurity content, as
well as to the boundaries of the spin–Peierls domains [25].

Figure 2. The temperature evolution of the ESR line for the 1.7% Ni-doped sample.H ‖ b,
f = 36.0 GHz. The arrow marks the resonance field forg = 2. The narrow line is the DPPH
mark.

The intensity of the ESR signals observed at low temperatures in the Ni-doped samples
is larger than the intensity of the ESR in pure samples. The value of the intensity for
x = 0.5% corresponds approximately to the concentration of the inserted impurities, while
for x > 1.7% the intensity is less than that of a paramagnet with the corresponding amount
of S = 1 spins. The evolution of the ESR line with temperature for samples with different
concentrations of impurity is shown in figures 1, 2 and 3.



ESR in the doped spin–Peierls compound Cu1−xNixGeO3 7883

Figure 3. The temperature evolution of the ESR line for the 3.2% Ni-doped sample.H ‖ a
(easy-axis direction). The arrow marks the resonance field forg = 2.

Figure 4. The temperature dependence of the ESR linewidth for the 1.7% Ni-doped sample.
f = 36.4 GHz.

In contrast to the case for the pure material, the value of theg-factor strongly depends
on the temperature belowTSP for Ni-doped crystals. The resonance field is shifted toward
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Figure 5. The temperature dependencies of resonance fields for the 3.2% Ni-doped sample.
f ≈ 36 GHz. The arrows mark the resonance fields forg = 2.

higher fields with decreasing temperature and theg-factor diminishes by about 20%. For
the smallest concentration,x = 0.005 (figure 1), an additional weak line with ag-factor
of about 2 arises at low temperatures, indicating an ESR spectrum which is intermediate
between those of the pure and doped samples.

The sample doped with 1.7% Ni showed an analogous temperature shift of the ESR line
(figure 2). The linewidth has a maximum at a temperature of about 2.5 K (see figure 4),
which is close to the Ńeel temperature for this crystal. There is no observable shift of
the line position between the Néel temperature 2.3 K and the lowest temperature of our
experiments, 1.3 K, in the frequency range 18–60 GHz.

The sample containing 3.2% Ni demonstrated a transformation from a single-line
spectrum into a spectrum typical of an orthorhombic antiferromagnet with several resonant
lines. Three lines appear at this transformation when the magnetic field is parallel to the
direction of spin ordering (figure 3), and a gap opens in the absorption spectrum for other
directions of the magnetic field. This transformation occurs at 4 K, corresponding to the
Néel temperature for this sample. Above the Néel temperature, the resonance field slightly
increases as the temperature decreases, but this shift is smaller than for more lightly doped
samples. The temperature evolution of the resonance field is given in figure 5.

We performed measurements of the resonance field in the frequency range 18–75 GHz.
The resonance frequency–field dependencies for 0.5% Ni-doped and 1.7% Ni-doped samples
were linear and gapless in the temperature interval between 1.3 and 20 K. A typical
dependence of the resonance frequencyf on the magnetic fieldH is given in figure 6.
The temperature dependencies of theg-factors taken at different frequencies are given in
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Figure 6. The ESR spectrum of the crystal doped with 1.7% Ni.H ‖ c, T = 1.8 K.

Figure 7. The temperature dependencies of theg-factors.

figure 7. The sample doped with 3.2% Ni is presented here only atT > TN , where the
spectrum is gapless. The values of theg-factors are obtained from the relationg = 2f/γH
with γ = 28 GHz T−1.

Note that the deviation of theg-factors with temperature does not tend towards the
value of theg-factor for Ni2+ ions which has the value of about 2.3. AtT > TSP there
is also a remarkable deviation of theg-factor for the doped crystals from the value of the
pure material. This deviation increases with increasing concentration.
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Figure 8. The spectrum of the antiferromagnetic resonance of Cu0.968Ni0.032GeO3 atT = 1.8 K.

The AFMR spectrum of the 3.2% Ni-doped sample atT = 1.8 K which has well
pronounced gaps of 22 GHz and 33 GHz is presented in figure 8.

3.2. The spin–Peierls transition

The drop of the integrated intensity of the ESR line marks the temperature of the spin–Peierls
transition both for pure and doped crystals. The appropriate temperature dependence of the
integrated intensity is shown in figures 9(a) and 9(b). The transition temperatures obtained
from the ESR data are given in table 1.

Table 1. The temperatures of the spin–Peierls transition obtained from the ESR intensity versus
temperature dependencies for the samples of Cu1−xNixGeO3

x 0 0.5% 1.7% 3.2%

TSP (K) 14.0± 0.5 12.5± 0.5 11.5± 0.5 8.0± 1

The values ofTSP for doped crystals are smaller than those for pure CuGeO3. The value
of TSP for the 1.7% Ni-doped sample agrees well with the neutron scattering data [20],
while for the 3.2% Ni-doped sample the neutron scattering data cannot be used for the
determination ofTSP because of the almost complete collapse of the spin–Peierls excitations.
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(a)

(b)

Figure 9. The temperature dependencies of the integrated ESR intensity for pure and doped
crystals. The dotted curve shows the susceptibility of a paramagnet containing 0.5% of spins
S = 1. g = 2.3.

3.3. Magnetization curves

The magnetization versus magnetic field was measured at different temperatures for the 1.7%
Ni-doped sample to investigate the magnetic properties of the sample in the temperature
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Figure 10. Magnetization curves for the 1.7% Ni-doped sample atH ‖ a.

range of the strongg-factor evolution. Figure 10 illustrates theM(H) dependencies at
different temperatures forH ‖ a. For the clear demonstration of the nonlinear contribution
a fixed linear part is subtracted and the difference1M is plotted. Significant nonlinearity
arises at low (T < 6 K) temperatures. The inset of this figure demonstrates the spin-flop
transition atH = 0.3 T, H ‖ a. For H ‖ b andH ‖ c the M(H) curves are similar
except for the spin-flop steps, which are observable only forH ‖ a. The nonlinear parts for
the a- andc-directions of the magnetic field are the same, for theb-direction the nonlinear
contribution is about 50% greater.

4. Discussion

4.1. The x–T phase diagram

The values of the spin–Peierls transition temperature and the Néel points obtained from
the ESR intensity are in good agreement with thex–T phase diagram for the Ni-doped
samples presented in [26], with a linear decrease ofTSP with x in the interval 1.7–2.9%.
Our additional points atx = 0.5% and 3.2% extend the experimental verification of the
linear region.

4.2. Antiferromagnetic resonance

Doped crystals, which demonstrated the Néel order at low temperatures, show different types
of magnetic resonance spectrum. The sample doped with 1.7% Ni has the Néel point at
2.3 K, but did not show a characteristic gap in the magnetic resonance spectrum (figure 6).
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The sample doped with 3.2% Ni has a gap in the resonance spectrum (figure 8). This
spectrum may be described as the AFMR spectrum of an orthorhombic antiferromagnet,
obtained by means of the Landau–Lifshitz equations of sublattice magnetization motion
within a molecular-field approximation. Taking the axesa, c, b as the easy, the second easy
and the hard axis correspondingly, we obtain the resonance frequenciesν1,2 as follows [27].

(i) H ‖ a, H < HSF :

(ν1,2/γ )
2 = 1

2
[(1+ α2)H 2+ C1+ C2

± ((1− α2)2H 4+ 2(1+ α)2(C1+ C2)H
2+ (C1− C2)

2)1/2]. (1)

(ii) H ‖ a, H > HSF :

(ν1/γ )
2 = H 2− C1

(ν2/γ )
2 = C2− C1.

(2)

(iii) H ‖ c:

(ν1/γ )
2 = H 2+ C1

(ν2/γ )
2 = C2.

(3)

(iv) H ‖ b:

(ν1/γ )
2 = H 2+ C2

(ν2/γ )
2 = C1.

(4)

Here C1,2 = 2HeHa1,a2 (He, Ha1,a2 are exchange and anisotropy fields respectively),
HSF = (2HeHa1/α)

1/2 is the spin-flop field andα = 1−χ‖/χ⊥. The applied magnetic field
H and the anisotropy fields are considered to be much smaller than the exchange field.

By fitting our data according to equations (1)–(4) we obtained the following parameters
of the AFMR spectrum:

HSF = 1.2± 0.05 T

γ = 24.6 GHz T−1

2HeHa1 = 0.85± 0.10 T2

2HeHa2 = 1.80 T2

α = 0.75± 0.2.

The gap values for the second easy- and hard-axis directions of the magnetic field are
22 GHz and 33 GHz (0.11 meV and 0.17 meV) respectively, which are in agreement with
the value of 0.18 meV obtained from neutron scattering [20].

The spin-flop magnetic field is characterized by a wide band of absorption instead of
a single resonance frequency (see figure 8). According to our data,HSF = 1.2 T. This
value is in good agreement with the value of the spin-flop field of 1.1 T found in [21] from
magnetization curves for the Ni-doped crystal withx = 0.033.

From the exchange integral valuesJb ≈ 0.7 meV,Jc ≈ 1.8 meV described in section 2
and assuming thatS = 1/2 andHe = 4(Jc + Jb)S/(gµB), we estimate the exchange-field
valueHe ≈ 27 T. Furthermore, from our data on the AFMR gap we deduce the values of
the anisotropy fields:Ha1 ≈ 0.017 T andHa2 ≈ 0.036 T.

The single-line ESR spectrum transforms into the AFMR spectrum with a gap for
x = 3.2%, but forx = 1.7% the transition to the Ńeel state is marked only by the maximum
of the linewidth. If the conventional approach to the AFMR frequency derivation were valid
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for the sample containing 1.7% Ni, the observed value of the spin-flop transition (figure 10)
would correspond to an AFMR gap of 7.5 GHz. For the frequency 18 GHz, forH ‖ a
it should shift the resonance field by 0.05 T towards higher fields and forH ‖ c to lower
fields. This shift should be visible in our experiments on lowering the temperature from
TN = 2.3 to 1.3 K. Nevertheless, no shift exceeding 0.02 T was observed. This discrepancy
between the static and dynamic properties of the impurity-induced antiferromagnetic state
within the spin–Peierls matrix may be attributed to the low value of the order parameter for
the Ńeel state. The sublattice magnetization equals only 0.06 of the nominal value. The
usual procedure for deriving the AFMR frequency is therefore not valid, because of the
assumption that the spins are arranged in the form of hard sublattices, without a reservoir
of disordered spins. In the case of the coexistence of the spin–Peierls and Néel ordered
states, the magnetically ordered part of the magnetization should interact with the disordered
spin–Peierls background via the strong exchange interactionJc. It will probably cause an
unusual type of magnetic resonance frequency or an overdamped mode.

4.3. Spin clusters and magnetic resonance

The value of theg-factor for Ni-doped samples differs strongly from the corresponding
values for pure crystals and for crystals doped with other impurities [24, 19]. This difference
is found both above and belowTSP . Below the spin–Peierls transition there is also a strong
anisotropy in theg-factor. Because of the pronounced difference between the observedg-
factor and that expected for individual Ni and Cu ions, we consider that clusters of several
spins coupled by the exchange interaction are responsible for the discrepancy. Theg-factor
of the cluster of ions coupled by the symmetric Heisenberg exchange takes the averaged
value between theg-factors of isolated ions [28]. The observedg-factor value is well outside
of this interval. The possible reason for this strikingg-factor deviation is the formation of
clusters containing several spins coupled both by symmetric and antisymmetric exchange
interactions [29].

The formation of clusters should occur in doped CuGeO3 crystals around the dopant ions,
as described in section 1, because the defect is surrounded by several antiferromagnetically
correlated spins. The characteristic length of the reduction of the correlated spin component
on moving away from the impurity should be about seven interionic distances [11].

Clusters containing threeS = 1/2 ions are known to display an effectiveg-factor which
is smaller than theg-factor of an isolated ion. The anisotropy of theg-factor for the cluster
is larger than that of the isolated ions [30, 31, 29]. This change in theg-factor is described
by taking into account the spin–orbital interaction combined with the Heisenberg exchange
in the form of a Dzyaloshinsky–Moriya antisymmetric exchange which is allowed when the
symmetry of the pairs of the interacting ions is low enough. According to [29], the reduction
of the effectiveg-factor is of the order ofD/δJ . HereD is the antisymmetric exchange
coefficient andδJ is the difference between the exchange integrals within a triangular spin
cluster. The presence of the Dzyaloshinsky–Moriya term for pure CuGeO3 was proposed
in [32] to explain the ESR linewidth at high temperatures. In addition, the Dzyaloshinsky–
Moriya term describing the interaction of two neighbouring magnetic ions may arise below
TSP because of the lowering of the local symmetry resulting from the dimerization.

Figure 11 shows an impurity atom embedded in the dimerized matrix. The dimerization
is disturbed in the vicinity of the impurity. There are no symmetry centres for Ni–Cu pairs.
The region around the impurity atom also does not have a symmetry centre. Therefore
Dzyaloshinsky–Moriya interaction coefficients should have different nonzero values for each
pair of ions in the vicinity of the impurity.
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Figure 11. The structure of the dimerized lattice around the impurity atom. The five- and
six-spin clusters. The arrows indicate the direction and the value of the average spin projections
within the six-spin cluster withDij = 0.

We consider the models of the spin cluster with the final and relatively small numbers
of spins to describe qualitatively the ESR spectra and to evaluate the coefficients of the
Dzyaloshinsky–Moriya interaction. The larger the number of spins under consideration, the
more realistic the model, because the real cluster is formed on the basis of the impurity in
the infinite chain. For a large number of spins in the model, the correlated component of
the spins lying far from the Ni spin should be strongly reduced due to the dimerization.
Therefore the magnetic properties of the model cluster should be independent of the number
of spins. The possible values of the total spin of the cluster arising due to the substitution
of one Cu ion per Ni ion areS = 1 andS = 1/2. In order to obtainS = 1, the spin of the
Ni ion must be uncompensated and therefore the Cu ions are divided into dimers in another
way when compared to the undisturbed chain. The correlation of the dimerization in the
neighbouring chains will be violated in this case. For the case of the total spinS = 1/2,
the spin of the Cu–Ni pair is uncompensated. This total spin value does not cause the
rearrangement of the dimer lattice except for when the single pair Cu–Cu is replaced by a
Cu–Ni pair. Therefore the total spinS = 1/2 of the cluster corresponds to the lower energy
of the perturbation of the dimerized lattice, and theS = 1/2 models with the finite number
of spins are probably more realistic than the models withS = 1.

We have analysed the five- and six-spin models for the cluster. The five-spin model has
S = 1 in the ground state and the six-spin model hasS = 1/2. The three-spin cluster would
be the simplest case, but it hasS = 0 in the ground state and is therefore nonmagnetic. The
four-spin model could not include dimers from both sides of the Ni ion.

The five- and six-spin clusters are shown schematically in figure 11 and are described
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by the Hamiltonian

H =
K∑
i,j

′
Ji,jSi · Sj +

K∑
i,j

′
Di,j · Si × Sj +

i=K∑
i=1,α=a,b,c

giαµBHαSiα. (5)

Here thegiα are theg-tensor components for the Cu and Ni ions, andµB is the Bohr
magneton. TheJij are the nearest-neighbour and the next-nearest-neighbour exchange
integrals and theDij are the vectors of the antisymmetric exchange. The different pairs of
ions are taken into account only once in the sums

∑′. K is the number of spins, equal to
5 or 6.

In the following analysis we shall assume theDij -vectors to be parallel to each other
and perpendicular to thec-axes of the crystal. For the five-spin cluster the ions are labelled
Cu5–Cu4–Ni1–Cu2–Cu3 and the nonzeroJij are taken as follows.J54 = J23 = 10.6 meV
are the Cu–Cu exchange integrals;J12 = J14 = 5 meV are the exchange integrals for Ni and
Cu ions—they are estimated as half of the Cu–Cu exchange integrals [33];J42 = 3.6 meV is
the next-nearest-neighbour exchange for the pure material [9];J13 andJ15, the next-nearest-
neighbour exchange integrals for the Ni ion, are taken to be 2 meV. TheDij -vectors are
assumed to be parallel to each other and perpendicular to the chains.

The diagonalization of the Hamiltonian (5) gives the energy levels forS = 1 states of the
five-spin cluster depending on theDij -values and magnetic field. The levels characterized
with Sz = 0,±1 are spilt by theDij -terms of (5). The transitions with the momentum
change of±h̄ are therefore separated by a gap of 1.0 meV in zero field. The formulae
determining the gap and the values of theg-factor are given in the appendix. This gap
is the main feature differentiating theS = 1 andS = 1/2 cases of the five- and six-spin
models.

The lowestS = 1/2 states of the of the six-ion clusters are also separated by a gap which
depends on the exchange integrals andDij -values. A magnetic field splits these levels; this
splitting depends on the magnetic field andDij . However, the transitions between the
sublevels with the±h̄ momentum change remain gapless. The modification of the ESR
spectrum at low frequencies is restricted here to the renormalization of the effectiveg-
factors. The energy levels are obtained by the diagonalization of the 10×10 energy matrix
for the S = 1/2 states of the six-spin cluster. For the cluster with the ions labelled Cu5–
Cu6–Ni1–Cu2–Cu3–Cu4 with the following values of the exchange integrals:J12 = 5 meV,
J16 = 5 meV,J23 = 9.8 meV,J34 = J56 = 10.6 meV, the terms dominating in theg-factors
for the cases with the magnetic field perpendicular and parallel to the Dzyaloshinsky–Moriya
vectors are

g⊥ ≈ 4gNi − gCu

3
− 4gNi + 5gCu

9

(4D16+ 3D65)
2

54E2
21

(6)

g‖ ≈ 4gNi − gCu

3
(7)

where

E21 ≈ J56− 2

3
J61+ 1

6
J62− 5

9
J15 (8)

is the energy interval between the ground state and the lower excited state of the cluster.
To obtain g⊥ = 1.6 as observed in our experiments, we have to assume that

D16 ≈ D65 ≈ 3 meV. The exact diagonalization of the matrix gives the close value of
|Dij | = 3.4 meV.

The values of the averaged spin projection at the site for the six-spin cluster obtained by
the procedure described are given in table 2 and are shown schematically in figure 11. The
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Table 2. The average values of the spin projections of the ions used in constructing a model
six-spin cluster.

Dij S5 S6 S1 S2 S3 S4

0 0.16 −0.118 0.614−0.145 0.007−0.017
See the text 0.117−0.125 0.591−0.152 0.013−0.02

following numerical values are used in this procedure in addition to the exchange integrals
given above:D12 = D16 = D23 = D34 = D65 = 3.4 meV.

Thus the results obtained on the basis of the six-spin model correspond to the observed
gapless ESR spectrum with the anisotropicg-factor deviating from the free-sping-factor.
The five-spin model does not correspond to the observed ESR signals due to the absence
of a gap in the observed spectrum. Therefore the spectra obtained confirm the proposed
S = 1/2 structure of the cluster.

Note that in our experiments we observed the reduction of theg-factor with decreasing
temperature for all principal orientations of the magnetic field; while the model with collinear
vectorsDij predicts the deviation for only one principal direction, theg-factors for the other
two principal directions should be close to 2. Nevertheless, these simple models demonstrate
the possible mechanism for the reduction of the value of the effectiveg-factor and of its
strong anisotropy. The deviation from the free-sping-factor value of the other components
of theg-factor tensor may probably be provided by any noncollinearity of the vectorsDij .

The nonlinearity of the magnetization curves at low temperatures which is shown in
figure 10 also confirms the formation of spin clusters with their intrinsic degrees of freedom,
because the energy levels of the cluster are separated by gaps depending in a nonlinear
way on the magnetic field. The existence of a nonlinear susceptibility was reported as
evidence for Dzyaloshinsky–Moriya interactions in three-ion clusters in [34]. The growth
with temperature of the linear part of the susceptibility, visible in figure 10, is obviously
due to the temperature dependence of the concentration of the triplet excitations of the
spin–Peierls state. The nonlinear contribution to the magnetization curves diminishes and
vanishes with the temperature rise from 1.6 to 6 K. At a temperature of about 9 K the
magnetization curve again becomes nonlinear, but with the convexity directed down. The
differential susceptibility grows with the magnetic field. This behaviour may be explained by
the destruction of the spin–Peierls state by the applied magnetic field [35]. This destructive
magnetic field could be of moderate magnitude when the temperature is close toTSP .

The nonlinear magnetization curve at 2 K might be described as a sum of the linear
M(H) curve and of the magnetization of a paramagnet with the concentration of 10−3

S = 1/2 ions per Cu ion, the nonlinearity being ascribed to the paramagnetic saturation.
However, the analogous curve for 6 K could not be described in this way because the
characteristic field of the saturation is not shifted to higher fields.

The change of theg-factor of the Ni-doped samples with temperature may be ascribed
to the freezing out of the reservoir of the triplet excitations of the spin–Peierls state below
TSP . It results in the switching off of the exchange narrowing and in the destruction of
the collective character of the precession mode of the impurities and triplet excitations of
the spin–Peierls state. This process is similar to the temperature evolution of the resonance
spectrum of the triplet excitations in ion radical salts with a singlet ground state [36, 37].
At low temperatures only the impurity mode (the spin-cluster mode) survives, which leads
to the unusual value of theg-factor. At intermediate temperatures the intermediateg-factor
is observable, due to the exchange mixing of the spin states.
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5. Conclusion

The data obtained correspond to anx–T phase diagram showing a linear dependence of
TSP and TN on the doping concentration. From the AFMR spectra we found that the
impurity-induced antiferromagnetism in Cu0.968Ni0.032GeO3 can be described in terms of a
molecular-field theory as a conventional orthorhombic antiferromagnet with the easy axis
directed alonga, the hard axis alongb and the second easy axis alongc. From AFMR
spectra we obtained gaps of 22 and 33 GHz and anisotropy fields ofHa1 ∼ 0.017 T,
Ha2 ∼ 0.036 T. The antiferromagnetic ordering of the 1.7% Ni-doped sample could
not be considered within the molecular-field approximation because of the small value
of the sublattice magnetization accompanied by the magnetically disordered spin–Peierls
background. This results in the absence of a conventional AFMR spectrum. The anomalous
value and temperature dependence of theg-factor in the spin–Peierls state of Ni-doped
crystals indicates the formation of spin clusters around the doping magnetic ions. The
presence of magnetic clusters with their own internal degrees of freedom is confirmed by
observation of nonlinear magnetization curves in the magnetically disordered state. Further
theoretical and experimental investigations of the cluster structure are necessary for a more
detailed interpretation of ESR spectra and magnetization curves.
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Appendix

The calculations of the energy levels of the five-ion linear cluster Cu5–Cu4–Ni1–Cu2–Cu3

are based on the Hamiltonian (5). The energies of the three low-lying triplets withS = 1
are given approximately by

E1,2 = I1+ I23

2
+ I2+ I3

4
∓ 1

2

√(
I1− I23− I2+ I3

2

)2

+ 2(I12+ I13)2. (A1)

E3 = 1

2
(I3+ I2)− I23. (A2)

where

I1 = −3

4
(J23+ J45) (A3)

I2 = −1

2
(J14+ J15)− 3

4
J23+ 1

4
J45 (A4)

I3 = −1

2
(J12+ J13)− 3

4
J45+ 1

4
J23 (A5)

I12 = 1√
2
(J14− J15) I13 = 1√

2
(J12− J13) I23 = 1

4
J24. (A6)
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The Dzyaloshinsky–Moriya interaction splits the ground-state triplet into levels with the
energiesEs , Ea,b:

Es = E1 Ea,b = E1− C2
1
(G12−G14)

2

E3− E1
(A7)

where

G12 = 1

4
(D12+D23−D13) G14 = 1

4
(D14+D45−D15). (A8)

C1 = 0.5(I2+ I3)+ I23− E1

{[0.5(I2+ I3)+ I23− E1]2+ 0.5(I12+ I13)2}1/2 . (A9)

The energies in the magnetic field are determined by the secular equation∣∣∣∣∣∣∣
Es − ε gxeff βHx gzeff βHz

gxeff βHx Ea − ε igyeff βHy

gzeff βHz −igyeff βHy, Eb − ε

∣∣∣∣∣∣∣ = 0. (A10)

Heregxeff , gyeff andgzeff are given by

gxeff = gzeff =
[
C2

1gNi + 1

2
C2

2(gNi + gCu)

](
1− 1

2

(
C1
G12−G14

E3− E1

)2)
(A11)

g
y

eff = C2
1gNi + 1

2
C2

2(gNi + gCu)−
(
C1
G12−G14

E3− E1

)2(
C2

1gNi + (0.5− C2
1)(gNi + gCu)

)
(A12)

where

C2 = −(I12+ I13)/
√

2

{[0.5(I2+ I3)+ I23− E1]2+ 0.5(I12+ I13)2}1/2 . (A13)

The Dzyaloshinsky–Moriya vectorG12 − G14 is supposed to be parallel to they-
axis. When the external magnetic field is perpendicular to the vectorG12 − G14 and
Es − Ea � gβH the frequency–field dependence is quadratic.
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